BONDS

A bond is an interest-only loan that your firm takes out. Your firm gets money at the beginning (from the investor buying it), your firm pays a set amount of periodic interest (in the form of coupons), and then your firm pays back its entire face value at the end of the loan.

N - The Number of Periods

- **It starts with the years to maturity (how long until the end of the loan):**
 - “matures in X years” / “matures X years from today”
 - “an X-year bond”
 - “bond has a duration of X years”

- **That YTM gets modified by the frequency of the payments:**
 - “Annually” \(N = \text{YTM} \) (stays the same)
 - “Semiannually” \(N = \text{YTM} \times 2 \)
 - “Quarterly” / “Every Three Months” \(N = \text{YTM} \times 4 \)
 - “Monthly” \(N = \text{YTM} \times 12 \)

- **Watch out for the tricks!**
 - “short-term bond with no coupons that matures in three months” is going to have an \(N \) of just .25! Why? Because YTM is an annualized rate (see I/Y section), and three months is a quarter of the year.

PMT - Payment

- **It starts with how much $ coupons will pay in a year:**
 - “Annual coupon rate of X%”
 - This is a percent based on face value (par). So, “a coupon rate of 7.2%” means that every year coupons are paying 7.2% of $1000, or .072 x $1000, which is $72.
 - That $72 is either in one annual coupon, or two semi-annual coupons of $36 each (72 / 2 = 36), four quarterly coupons of $18 each (72 / 4 = 18), etc.
 - “An annual coupon of $X”
 - “interest payments of $X”

- **Then gets modified to match the number of periods:**
 - “Annually” \(\text{PMT} \) stays the same
 - “Semiannually” / “Pays semianannual coupons” \(\text{PMT} / 2 \)
 - “Quarterly” / “Every Three Months” \(\text{PMT} / 4 \)
 - “Monthly” \(\text{PMT} / 12 \)

- **Watch out for the brain teasers!**
 - “an X% semiannual coupon bond” is still telling you an ANNUAL rate. It will need to be changed to \(\text{PMT} \times \text{X%} \text{ x FV} \), and then divided by the period (\(\text{PMT} / 2 \)).
 - “pays a coupon of $X quarterly” is saying what $ each of this year’s four coupons will be. So it’s ALREADY modified!

I/Y - Interest Rate Per Period

- **It starts with an annualized rate:**
 - “the yield to maturity is X%”
 - “has a yield to maturity of X%”
 - “the return required by bond holders is X%”
 - “market interest rates are X%”
 - “market is requiring a return of X% annually”
 - “the discount rate”

- **Then gets modified to match the payment periods:**
 - “Annually” \(\text{I/Y} \) stays the same
 - “Semiannually” \(\text{I/Y} / 2 \)
 - “Quarterly” / “Every Three Months” \(\text{I/Y} / 4 \)
 - “Monthly” \(\text{I/Y} / 12 \)

FV - Future Value

- “has a face value of $X” / “a $X face value”
- “par”
 - Almost always $1,000

PV - Present Value

- **It starts with the selling price:**
 - “similar bonds are currently priced at $X” / “similar bonds are quoting at $X”
 - Nobody’s going to buy your bond for more than another firm’s bond that has the same terms. So similar bond prices are what your prices are, too.
 - “priced at par” / “Priced at X% of par”
 - Par is face value.
 - “bought a bond for $X” / “the price of the bond”
 - “was priced at $X” / “the current market price”

- **Then it gets reduced by flotation costs (if mentioned):**
 - “flotation costs of $X per bond”
 - “X% flotation costs” (need to convert to $, which is X% of Sale Price)
 - “transaction fees of”
 - Your firm is paying a company to sell this for you, so if there are flotation costs, \(\text{PV} = \text{Sale Price} - \text{Flotation} \)

Current Yield Is NOT Yield to Maturity

- Every once in a blue moon, a bond problem will ask for “Current Yield.” That’s NOT the same as solving for I/Y! Why not? It’s not accounting for the time value of money.

Current Yield = Annual Coupon / Current Market Price

Note: Take a look at that formula. It’s exactly like how to find the cost of Preferred Stock:

\[\text{Kps} = \frac{\text{D}}{\text{V}_{0}} \]

- If you look closer, you’ll see that it’s also just the Gordon Growth Model, but with 0% growth:

\[\text{Kcs} = \frac{\text{(D1 / V0) + g}}{g} \]

- They’re all the same! You’re just finding a rate by putting PMT over PV!

Unique Bond with Different Coupon Rates

- Also a super-rare problem: a bond pays different coupon amounts each year. Don’t panic, its just a NPV Cash Flow calculation!

A unique 4-year bond with a FV of $1,000 that pays a coupon of $48 in year 1, $55 in year 2, $62 in year 3, and $79 in year 4. If the YTM is 9.5%, what is the market price of the bond?

Simply solve it by doing Cash Flow on your calculator:

\[\text{Cfo} = 0 \]
\[\text{C01} = 48 \]
\[\text{C02} = 55 \]
\[\text{C03} = 62 \]
\[\text{C04} = 1079 \]

\[\text{I} = 9.5 \]

Solve for NPV to give you the market price of the bond: $887.45

©2018 Ron Daniel, All Rights Reserved | ronDaniel.com | Get tutoring on Wyzant | Email | LinkedIn